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ABSTRACT

Diffusion models have been successful in a number of fields in recent years due to
their ability to obtain a synthetic probability distribution for a given dataset. How-
ever, they are likely trained on general data and can generate undesired results for
specific tasks and use cases. In this work, we propose a simple pipeline to fine-
tune unconditional diffusion models via a constrained optimization process. We
show that this formulation has broad compatibilities with straight-forward score
functions in diverse domains of applications by experiments in (i) removing the
class of digits in an MNIST data set, (ii) simulating safety constraints for trajec-
tory planning, and (iii) optimizing with pairs of expert preferences on polymer
generation tasks. We show that our framework is robust and easy to implement,
only requiring an additional coarse penalty term for all of the experiments we
demonstrate.

1 INTRODUCTION

Diffusion models are a powerful tool to generate various forms of data, from visual data such as
images( Zhang et al. (2024); Ruiz et al. (2023); Li et al. (2023)) and videos( Ho et al. (2022); Xing
et al. (2024); Blattmann et al. (2023), to robot learning data such as video policies( Dong et al.
(2024); Chen et al. (2024b)).

A diffusion model reflects approximately the underlying distribution of its training data. Such distri-
bution could be unideal. Conditional diffusion models implicitly constrain the output distribution by
aligning with a text prompt embedding. Inspired by this, we propose a more general diffusion fine-
tuning procedure that leverages constrained optimization, aiming to alter the underlying distribution
of the diffusion models with a guiding function.

To provide further motivations, we briefly discuss some potential issues in pre-trained diffusion
models which are solvable with our pipeline. In policy diffusion models, a genre of phenomenon
named ”hallucination” severely impact the execution of video policy by making up objects or scenes
inconsistent with history frames Aithal et al. (2024); Betti et al. (2024), leading to risky or hazardous
situations. Other than diffusion policy, sometimes we might intend to avoid certain outcomes in the
probabilistic distribution, even though they are present in the original dataset. For example, when
leveraging a diffusion model to generate possible indoor scenes with furniture and walls, we might
want it to not generate blue backgrounds because the end users of the diffusion model do not favor
the color blue. For a more practical case of safe robot navigation task, due to unforeseen obstacles,
we might want the robot to avoid a certain region in the room when it’s reaching towards its goal,
even though that region is accessible in the original training data.

To achieve tasks alike the aforementioned, we are inherently trying to shape a pre-trained diffusion
model to our desired directions. Re-training the diffusion model from scratch on the desired clean
training dataset requires a lot of resources.

It thus becomes natural to fine-tune diffusion models to suit human’s preferences. In reinforcement
learning, a popular approach is Reinforcement Learning with Human Feedback (RLHF). A reward
model is learned to capture what humans care about in the task, which is then used to train the agent.
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Compared to designing the reward, a more efficient way would be to directly reflect the constraints
in the diffusion process.

In this work, we present a simple pipeline to fine-tune unconditional diffusion models via a con-
strained optimization process. Given a pre-trained diffusion model and a constraint on the desired
outcome , we aim to remove undesirable outputs from its probability distribution. To achieve this, we
leverage the penalty-based method, where the constrained diffusion model is formulated as an opti-
mization problem that minimizes the diffusion objective subject to the imposed constraints. Com-
pared to Reinforcement Learning With Human Feedback (RLHF)( Fan et al. (2023)), our method
requires much less training and fewer resources, thus offering a simpler framework for diffusion
fine-tuning problems than in the context of reinforcement learning. That being said, we do believe
that our work can be understood intuitively as a variance of reward shaping in diffusion RLHF.

To provide evidence of our work’s functionality, we conducted experiments in at least three tasks.
First, We were able to cleanly remove the class of digits 4 from an MNIST dataset without affect-
ing the quality of other digits. Secondly, we show succession in manipulating diffusion policy on
mini-grid path finding-problems. Given a mini-grid maze planning problem, we create additional
obstacles in the maze, and constrain the agent from going inside a pre-defined epsilon ball of the tar-
get. Our last task is to optimize with human preference pairs on polymers generated by pre-trained
diffusion model. This task demonstrates our algorithm’s compatibility with the Bradly-Terry Model
( Bradley & Terry (1952)) and connects this work to RLHF as well as interdisciplinary work.

To sum up, our contributions consist of the following:

• We introduce a simple pipeline to fine-tune unconditional diffusion models via a con-
strained optimization process, leveraging penalty-based method to generalize constraints
to non-convex functions.

• Our framework works across a wide range of tasks, offering a more generalizable approach
that can be readily utilized on pre-trained diffusion models with a constraint function.

• We provide an empirical analysis on the convergence of our algorithm, and discuss the
relationship between Constrained Fine-tuning and RLHF.

2 BACKGROUND AND RELATED WORKS

Constrained Optimization A constrained optimization problem P can be formulated as below:

P : min
x∈Rn

f(x) (1)

s.t. gi(x) ≤ 0, i = 1, . . . ,m (2)
hi(x) = 0, i = 1, . . . , k (3)
x ∈ Rn (4)

The equality constraints hi(x) = 0 can be further rewritten into hi(x) ≤ 0, hi(x) ≥ 0, and therefore
added to the inequality constraints. One major class of algorithm to solve such problem is the
penalty algorithm Tessema & Yen (2006); Lin (2013); Barbosa & Lemonge (2008) and the barrier
algorithm Doyle (2004); Dvurechensky & Staudigl (2024); Bomze et al. (2019), which construct
sequence of unconstrained optimization problems that under continuity of f and gi converge at
infinity.

Diffusion Models Diffusion models are generative models where a Markov chain is defined to
iteratively add noise to the image in the forward process, and a reverse process is learned to denoise
and construct desired image samples from noise Weng.

In the forward process, we are given a data point sampled from the real distribution x0 ∼ q(x),
where we add small amounts of Guassian noise up until timestep T . This gives us samples
x1, . . . ,xt, . . . ,xT , as specified by the following:

q (xt | xt−1) = N
(
xt;

√
1− βt xt−1, βt I

)
(5)
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, where {βt ∈ (0, 1)}Tt=1 is a variance schedule that controls the step sizes. Let αt = 1 − βt, and
αt =

∏t
i=1 αi. For ϵ ∼ N (0, I),

xt =
√
αtx0 +

√
1− αtϵ (6)

In the backward process, we reverse the forward process and sample from q(xt−1|xt) from a random
Gaussian noise xT ∼ N (0, I). Because we don’t know the ground truth data distribution, we learn
pθ to approximate the conditional probabilities in q, where

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) (7)

Evidence lower bound (ELBO) is introduced as the lower bound of the log likelihood of observed
data, where observed data is the sampled distribution from the diffusion model. Our goal is to
maximize the ELBO, which is a proxy objective for optimizing the latent varable model pθ. The log
of the evidence

log q(x) = Epθ(x1:T |x)[log
q(x0:T )

pθ(x1:T |x)
]︸ ︷︷ ︸

(1) ELBO

+DKL(pθ(x1:T | x0)||q(x1:T | x))︸ ︷︷ ︸
(2) KL Divergence ≥0

(8)

Since log q(x) is constant with respect to θ, optimizing the ELBO is equivalent to minimizing KL di-
vergence. By Equation 6, minimizing KL divergence can be simplified to minimizing the following
mean squared error as prediction loss:

Lt(θ) = Ex0,ϵ,t[||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2] (9)

, where ϵθ is the noise prediction at timestep t.

Diffusion models can also be guided towards certain outputs by designing score functions sθ(x).
The gradient of such score function can be integrated into the gradient of the new evidence:

∇ = ∇x log q(x) +∇xsθ(x) (10)

Constrained Diffusion The constrained diffusion problem imposes restrictions on the output proba-
bility distribution of diffusion models. This requires adding constraints on its training process. Con-
ditional diffusion models Dhariwal & Nichol (2021); Ho & Salimans (2022); Bansal et al. (2023)
restrict generation through conditional information. But such restrictions are usually coarse, and can
usually be represented by a simple text labeling.

In most realistic cases, the constraints are far more complicated. In order to work with these complex
constraints, Liu et al. (2023); Du et al. (2024) balance generation using equal weights through com-
positional generation. Also leveraging conditional generation, Power et al. (2023) uses equal hyper-
parameters. Meanwhile, Friedrich et al. (2023) solves the constrained diffusion problem with fair
diffusion. Different from the above work, distribution models are balanced by Lagrange Multipliers
instead in Khalafi et al. (2024). They approached constrained diffusion models with dual training,
but assume strong convexity in the constraint functions, such as KL divergence Shlens (2014). The
constraint is limited to a target data distribution, i.e. the diffusion represented data distribution and
the target distribution should be close. Yet we assume that a more general set of constrains usually
comes in the form of continuous functions possibly parametrized by neural networks.

In addition, the objective of most current work is to balance data distribution from a biased training
dataset, whereas in the real world, a lot of cases require us to avoid certain outputs, i.e. biasing the
outcome to suit our preferences instead of the other way around, which makes the task non-trivial.
To address this limitation, our method fine-tunes unconditional diffusion models via a constrained
optimization process based on penalty-based methods, which doesn’t require the strong convexity
of constraints.

Reinforcement Learning with Human Feedback For applications in reinforcement learning, we
desire the agents to conform to human preferences and values. For this purpose, recent works Lee
et al. (2024); Knox (2011); Griffith et al. (2013) employ Reinforcement Learning with Human Feed-
back (RLHF) for policy shaping, where the agent is allowed to directly receive human feedback, and
a reward model is optimized to fine-tune the optimized policy. It has also been applied in the context
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of diffusion, where fine-tuning diffusion models is formulated as a reinforcement learning prob-
lem Zhao et al. (2025); Lin & Ye. However, learning a reward model requires resources, which can
also be time consuming when we want to train an agent to perform a variety of tasks. Swamy et al.
(2024) improved upon this by proposing an algorithm that requires a single agent to play against
itself but does not require training a reward model. Black et al. (2023); Fan et al. (2023); Yang et al.
(2024a); Hiranaka et al. (2024) have been able to incorporate human feedback online. Our method
leverages diffusion policy, and directly changes the loss function during the diffusion process to
incorporate score functions that reflect human preferences.

3 ALGORITHM

Denote the parameter of a pre-trained diffusion model by θ, our pipeline requires no more informa-
tion than a set of continuous differentiable constraints {gi, i ∈ I} on clean images.

First, to prepare the data for fine-tuning, we either sample a batch of clean image output pθ(x0|xT )
when the training data is not available, or sample a batch of prepared training data. Then, we feed
these training data back to the pre-trained diffusion model as in a standard diffusion training pipeline.
The forward process adds Guassian noice according to a schedule as standard, but we formulate the
backward steps in a constrained optimization matter. For each backwards training objective(usually
for updating the UNet), where the true noise is defined by the constrained diffusion problem P ∗ as:

P ∗ : min
x∈Rn

Lt(θ) = Ex0,ϵ,t[||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2] (11)

s.t. gi(x) ≤ 0, i ∈ I (12)
x ∈ Rn (13)

Given Lt(θ) strongly convex, assume {gi}Mi=1 continuous differentiable functions for all i, we pro-
pose to leverage the penalty-based method for the above constrained optimization problem.

Our loss function is thus formulated as follows:

Lt(θ,C) = Ex0,ϵ,t[||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2]︸ ︷︷ ︸

(1) prediction lossf(x0,t)

+ C · Et<Tϕ
[ReLU(g(x̂(xt, t)− δ)2]︸ ︷︷ ︸

(2) penalty p(xt,t,δ)

(14)

, where C is the penalty parameter, δ is the tolerance threshold, g is the vector of constraints, x̂ is the
clean image constructed from a noised version of it, ϕ represents the task, and Tϕ is task-dependent
timestep threshold for adding the penalty loss. We pass the constraint function output into a ReLU
activation to ensure the penalty term is strictly positive. This formulation of the problem P ∗ enables
us to use tools from the optimization literature.

Then, we construct an alternative unconstrained program:

P ∗(C) : min
x

[f(x0, t) + C · p(xt, t, δ)] (15)

so that C is an increase sequence and C → ∞. Let Ck ≥ 0, k = 1, . . . ,∞, let xk be the exact
solution to the program P ∗(Ck), and let x∗ be any optimal solution of P ∗,

The Penalty Convergence Theorem Suppose that f(x0, t), p(xt, t, δ), and g(xt, t) are continuous
functions. Let {xk}, k = 1, . . . ,∞, be a sequence of solution to P ∗(Ck). Then any limit point x̄ of
{xk} solves P ∗.

In the actual execution of the algorithm, we apply the constraint only when the noise level is not
too high, which is controlled by a hyperparameter Tϕ. We optimize for this Tϕ in each of our
applications. An overview of our algorithm can be found in algorithm 1.
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Figure 1: From left to right, above are samples generated after finetuning at epochs 0, 24, and
44 with a dataset of 512 images sampled from the pretrained model. Yellow highlights are non-
digit samples. Red highlights are discriminative class samples. As epochs increase, the number of
discriminative class samples decrease and the number of non-digit samples slightly increase.

3.1 AN ALTERNATIVE INTERPRETATION

We offer alternative interpretations of the aforementioned algorithm by linking it with RLHF. The
constraint diffusion algorithm is able to inject a form of reward signal at each noise level, instead
of only reflecting in the end. The idea intuitively follows that of the direct policy gradient for LLM
RLHF. We propose that this algorithm can also be viewed as a form of reward-shaping in RLHF. A
full investigation is still needs to bridge the two methods.

Algorithm 1 Practical Implementation of Constrained Diffusion Algorithm
Require: Maximum number of penalty iterations I , diffusion timestep t, initial penalty parame-

ters c, penalty growth factor r, penalty function g, number of iterations per penalty growth n,
diffusion for noise prediction ϵθ, function to reconstruct original sample with noise prediction
diffusion model x̂, noise schedule αt, ground truth sample x0, timestep threshold Tϕ, learning
rate η, early stopping threshold τ

1: for i = 1 to I or until convergence such that Lpenalty ≤ τ do
2: ϵ ∼ N (0, 1)
3: Ldiffusion = Ex0,ϵ,t[||ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)||2]

4: Lpenalty = Et<Tϕ
[ReLU(g(x̂(xt, t))− δ)2]

5: L(θ) = Ldiffusion + c · r⌊ i
n ⌋ · ||Ldiffusion||

||Lpenalty|| · Lpenalty

6: Compute gradient gi ← ∇θL(θ)
7: Update parameters θ ← θ − η · gi
8: end for
9: return θ

4 EXPERIMENTS

In this section, we demonstrate experimental results using our approach. We first conduct experi-
ments using the MNIST pap dataset which has a relatively small scale. We then move on to validate
our method on maze planning tasks using diffusion policy Chen et al. (2024b) and on Polymer.

4.1 MNIST

MNIST is a dataset which consists of images of digits from 0 to 9 in color white on black back-
grounds. Our goal is to remove samples of a particular digit from the unconditional sample distri-
bution of our diffusion model. This is a practical task that can be generalized to other tasks in which
the user of the diffusion model aims to remove certain outputs from the unconditioned diffusion
distribution. In our example, we choose to remove the digit 4 as it is often associated with misfor-
tune in Chinese culture. It is also a non-trivial task, because when we are trying to maximize the
KL-divergence between images of the digit 4 (which we aim to remove) and the generated images,
it pushes our sample distribution away from not just the digit 4 but also all digits together, which
could cause samples to not look like any digit.

5



Preprint. Under review.

Figure 2: From left to right, above are random walk (unconditional) samples generated from the
pretrained diffusion planner, a success case from the finetuned planner, and a failure case from
the finetuned planner. The pretrained sample does not avoid the forbidden zones. The finetuned
samples both avoid the forbidden zones with the success case retaining the continuity of the planned
trajectory while the failure case trajectory loses continuity, becoming more dotted and sometimes
ignoring obstacles.

Figure 3: From left to right, above are goal-guided (conditional) samples generated from the pre-
trained diffusion planner, a success case from the finetuned planner, and a failure case from the
finetuned planner. Similar to the results from the random walk, the pretrained sample does not avoid
forbidden zones while the finetuned samples avoid the forbidden zones. In the failure case, we
showcase a possible failure where the planned trajectory completely jumps over the forbidden zones
without planning around it.

We represent our penalty score function as follows:

g(x) = ReLU(pθ(y | x)− pϕ) (16)

, where y is the label for the class of digit 4, and we want to constrain the probability of generating
images to digit 4 to be below pϕ. Tϕ for this task is 800 timesteps.

Given the pretrained diffusion model, we first generate image samples of any digit. We create a
dataset of 512 such generated images, and fine-tune the diffusion model on this created dataset with
Algorithm 1. Our experimental results are presented in Figure 1. We show our diffusion outputs
after finetuning at epochs 0, 24, and 44. Yellow highlights are non-digit samples. Red highlights are
samples of digit 4. There’s a trade-off between non-digit samples and samples of the discriminative
class. As epochs increase, the number of digits 4 samples decrease, and the number of non-digit
samples slightly increase.

4.2 DIFFUSION PLANNING TRAJECTORY WITH SAFETY CONSTRAINTS

We further performed experiments on fine-tuning diffusion planning models to satisfy safety con-
straints on the MAZE2D MEDIUM benchmark from D4RL (Fu et al., 2021). We start from pre-
trained Diffusion Forcing planners (Chen et al., 2024a) that denoises full trajectories token-wise,
achieving state-of-the-art returns on unaided planning tasks. We introduce safety through user-
defined forbidden zones defined by coordinates on the grid and a set radius around each point. At
each fine-tuning step, we apply our constrained diffusion algorithm denoted by algorithm 1 to con-
strain the distance between every predicted point on the trajectory and the center of every forbidden
zone to be at least δ. The only modification to the original training loop is the inclusion of the
weighted penalty term as shown in equation 14; no safety-specific data, reward model, or hand-tune
control barrier function is required, unlike policy-guided diffusion (Jackson et al., 2024) or Safe
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Figure 4: The novel conductive polymer structures and SMILES strings generated by baseline Poly-
Gen with Diffusion1D backbone, trained on over 10000 examples.

Diffuser (Xiao et al., 2023). The fine-tuning experiment was carried out in both an unconditional
setting (Fig. 2), where the training data are random walks in the 2D maze, and a conditional setting
(Fig. 3), where the model is provided a goal position with fixed initial position and the training data
are trajectories linking the initial position to the goal.

We design our score function as follows:

g(x) = ReLU(R− d(P,Q)) (17)

, where R is the forbidden radius, P = {(pix, piy)}mi=1 are the trajectory points, Q = {(qix, qiy}ni=1
are the forbidden points, d is the distance between the set of points P and Q.

Results. Fine-tuning for 1 epoch guarantees safety constraints while preserving path smoothness.
Training a fresh model with obstacle-augmented data for comparable performance required 7 hours
on same devices. Qualitative roll-outs in Fig. 2 (unconditional) and Fig. 3 (conditional) show co-
hesive trajectories generated from both random walks and goal guidance that skirt the restricted
regions.

4.3 (FUTURE WORK) POLYMER GENERATION WITH HUMAN PREFERENCE

Generative models have become a central paradigm in molecular design, enabling de-novo discov-
ery of drug-like molecules, catalysts, and functional materials. Polymers are especially attractive
because (i) their vast compositional space is only sparsely explored in the laboratory, and (ii) macro-
scopic properties—ionic conductivity, glass-transition temperature, mechanical strength—hinge on
subtle variations in repeat-unit chemistry and chain architecture. Recent work shows that both
language-model and diffusion-based generators can propose electrolyte polymers with target con-
ductivities (Yang et al., 2024b) and tailor sequences for advanced composites (Ge et al., 2025).
Consequently, polymers provide a realistic, high-impact setting to test algorithms that must steer a
pretrained generator toward user-defined constraints (e.g. safety, synthesisability, or aesthetic pref-
erence).

Model: Diffusion1D backbone from PolyGen. We adopt the Diffusion1D architecture in PolyGen
introduced by (Yang et al., 2024b). Diffusion1D treats a polymer repeat unit as a one-dimensional
token sequence, applies Gaussian noise in the forward process, and leverages a 1D UNet to learn the
reverse denoiser—mirroring 2D DDPMs but with weight-tying and causal convolutions optimised
for sequence length ≤ 128 (Yang et al., 2024b). Because the model exposes intermediate hidden
states, it remains compatible with external property predictors and our future penalty term. PolyGen
also provides evaluation of novelty, uniqueness, sythesibility, validity, similarity and diversity of the
generated polymers, making future evaluations comprehensive and adding more possibilities into
penalty term shaping.
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Following Yang et al. (2024b), we pretrained our baseline model with the conditional setting, where
11409 Simplified Molecular Input Line Entry System (SMILES) strings of conductive poly-
mers only are used as the training set. We pre-trained our baseline model for 10000 steps, and the
generated conductive polymers can be seen in 4. We plan to design a more complex penalty term
from human feedbacks described in the following section.

Preference-driven scoring via Bradley–Terry. When expert chemists rank two generated candi-
dates (xi, xj), we can fit a Bradley–Terry (BT) model that assigns latent “merit” scores γi such
that

Pr(xi ≻ xj) = γi/(γi + γj)

(Liu et al., 2024). The BT log-likelihood:

ℓ(γ) =
∑

(i,j)∈P

yij log γi − (1− yij) log γj − log(γi + γj)

is differentiable; thus the estimated preference score sBT(x) = log γx serves as a continuous con-
straint g(x) in Eq. (14). Compared with manually crafted heuristics or black-box RLHF reward
models, BT offers (i) statistical efficiency on sparse pairwise data, (ii) an interpretable scale, and
(iii) negligible computational overhead. We therefore collect a small pool of ≈ 5 000 preference
pairs on PolyGen samples and optimise our fine-tuning objective with g(x) = δ − sBT(x), where
δ encodes the user-specified desirability threshold. This shows that out penalty based method is
especially adaptive, being able to take advantage of any score or reward functions that shows gener-
alization ability in recent development of RLHF, with a much simpler finetuning pipeline.

5 CONCLUSION

We present a simple pipeline to fine-tune unconditional diffusion models via a constrained opti-
mization process. We leverage penalty-based method to monitor loss during the diffusion process,
while offering a generalized constraints that removes the strong convexity assumption. Our for-
mulation has broad compatibilities in experiments ranging from computer vision tasks to diffusion
policy tasks in reinforcement learning, where the incorporation of score function reflecting human
preferences also offers a more straightforward approach than RLHF.
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Table 1: Hyperparameters for MNIST experiment.

Hyperparameter Value Description
I 50 Maximum number of penalty iterations
c 0.05 Initial penalty parameter
r 1.2 Penalty growth factor
n 10 Number of iterations per penalty growth
η 3e-4 Learning rate
τ 0.01 Early stopping threshold
Batch size 128 Batch size per finetuning step
Epoch 100 Number of finetuning epochs

Table 2: Parameters of U-Net model for MNIST experiment.

# Res-Net layers per U-Net block 2
# Res-Net down/upsampling blocks 6
# Output channels for U-Net blocks (128, 128, 256, 256, 512, 512)

A EXPERIMENTS

A.1 MNIST

This experiment is adapted from the MNIST experiment from Constrained Diffusion Models via
Dual Training (Khalafi et al., 2024).

Hyperparameters. For the penalty score function in the MNIST experiment Eq. (16), we pretrain
an MNIST classifier and apply softmax to the predicted logits to approximate pθ(y | x). We choose
pϕ = 0.1 based on the intuition that 0.1 is equivalent to random chance over 10 digits. We choose
our hyperparameters for Algorithm 1 empirically, which are summarized in Table 1.

Model architecture. We follow the original paper (Khalafi et al., 2024) and use a time-conditioned
U-Net model for the MNIST experiment. We add time conditioning as a positional embedding of
the timestep to the input image. See Table 2 for the model parameters.

Compute resources. We run the MNIST experiments on Google Colab premium with the A100
GPU setting. For each run, the experiment takes roughly 10 minutes.

FID. We use FID to evaluate our generation results. We sample 990 samples from the diffusion
model and 110 from every class in our MNIST dataset except for the discriminative class, which is
4 in our experiment. We show the FID trend in Figure 5. The FID trend increases due to the tradeoff
of image quality for the decrease in occurrences of the discriminative class.

A.2 DIFFUSION PLANNING

This experiment is adapted from the Maze2D Planning experiment from Diffusion Forcing (Chen
et al., 2024a).

Hyperparameters. For the penalty score function in the Diffusion Planning experiment Eq. (17),
we use euclidean distance as our distance function d(P,Q) and choose R = 0.3 for the radius of
our forbidden zones in our experiments in order to leave space for the trajectory to move around the
zones while continuing on its planned trajectory. We choose our hyperparameters for Algorithm 1
empirically, which are summarized in Table 3.

Model architecture. We follow the architecture from Diffusion Forcing (Chen et al., 2024a) and
use residue MLPs (Touvron et al., 2021) instead of U-Net for the diffusion model that is behind the
dynamics model.
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Figure 5: This graph shows the change in FID over epochs trained during the MNIST experiment.
The FID increases overtime as image quality is traded off with the decrease in samples of the dis-
criminative class.

Table 3: Hyperparameters for Diffusion Planning experiment.

Hyperparameter Value Description
I 100 Maximum number of penalty iterations
c 0.04 Initial penalty parameter
r 1.2 Penalty growth factor
n 10 Number of iterations per penalty growth
η 5e-4 Learning rate
τ 0.008 Early stopping threshold
Batch size 128 Batch size per finetuning step
Epoch 1 Number of finetuning epochs

Compute resources. We run the Diffusion Planning experiment on an M2 Macbook Pro. For a full
run over one epoch, the experiment takes around 4-5 hours. We find that we can achieve similar
results at a lower quality in around 30 minutes of runtime with the hyperparameters from Table 4.
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Table 4: Faster Hyperparameters for Diffusion Planning experiment.

Hyperparameter Value Description
I 100 Maximum number of penalty iterations
c 0.05 Initial penalty parameter
r 1.2 Penalty growth factor
n 10 Number of iterations per penalty growth
η 5e-4 Learning rate
τ 0.01 Early stopping threshold
Batch size 128 Batch size per finetuning step
Epoch 0.2 Number of finetuning epochs
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